SPECIAL SUPPLEMENT ON
EPILEPSY IN PAKISTAN: NATIONAL GUIDELINES FOR CLINICIANS
ABSTRACT

Introduction: Epilepsy is one of the most common chronic neurological disorders requiring prolonged medication with Anti-Epileptic Drugs (AEDs). According to The World Health Organization (WHO), epilepsy is one of those serious brain disorders that affect not only the individual but has a deep impact on the family and society in general. Approximately 50 million people are affected with epilepsy around the world, though recent epidemiological studies do not exist for Pakistan it is estimated that the prevalence of epilepsy is 9.99/1000. i.e. about 2 million people and 1/10th of the world burden of epilepsy is in Pakistan! The guidelines available are composed for a setting where epilepsy is managed by epileptologists/neurologists. In Pakistan it’s a different scenario, there is only one neurologist for 1.4 million population contrast to US where one neurologist for 26 thousand people. So we felt a need to adapt to alternate guidelines with strategies to provide epilepsy management at a primary care/general practitioner level and to standardize epilepsy care on a National level.

Methods:
To form these guidelines we reviewed and adopted from many different available guidelines mainly
1. Local adaptations of the WHO recommendations
3. Updated ILAE evidence review of AEDs special report 2013
4. Existing guidelines in other low income countries
5. NICE, AAN, AES recommendations.

Results:
National guidelines consist of
1. The universally ILAE accepted definition and classification of epilepsy and Epileptic syndromes with a simplified step wise approach to a patient with seizures and epilepsy in Pakistan.
2. Tables selecting the right drug with evidence based references keeping in mind the cost and availability in Pakistan.
3. AED selection in special populations e.g. women, children and elderly
5. Algorithms and tables for easy access
(Due to the limitation of space, points 3 and 4 will be published subsequently)

Conclusion:
The primary scope of these guidelines is to provide a concise practical management plan which considers the role of AEDs especially their judicial use. These guidelines hope to provide the physicians treating epilepsy patients with a step wise cost effective approach to the patient with epilepsy. A separate guideline to classification and diagnosis is also available, and the guidelines in entirety are also available on line at the Pakistan Society of Neurology website, and Epilepsy Foundation Pakistan website.

Keyword: Seizures, epilepsy, Anti Epileptic Drugs AED, guidelines, fits, neurology, epilepsy surgery, convulsions

GUIDELINES INTRODUCTION:

Epilepsy is one of the most common chronic neurological disorders requiring prolonged medication with AEDs. It is a disorder that is widely misunderstood and carries a vicious stigma. Epilepsy is a constellation of several disorders, syndromes and conditions with “Seizure” being the common symptom. For the purpose of these guidelines we have integrated the International League Against Epilepsy (ILAE) definitions of seizures and epilepsy.
There is a vast array of literature and guidelines that exist in developed countries for over a decade. These have been reviewed and compiled and modified to suit the Pakistani population and socioeconomic status. These guidelines hope to help improve medical decision making in Pakistan while treating the patient with epilepsy (PWE).

The Need For National Guidelines For Epilepsy In Pakistan:

The causes of Epilepsy and numerous and symptomatology diverse, but most of cases are treatable with AEDs, most of which are easily available. However knowledge about epilepsy and its care is extremely low. The majority of PWE are treated inadequately or inappropriately. According to The World Health Organization (WHO), “epilepsy is one of those serious brain disorders that affect not only the individual but has a deep impact on the family and society in general. Approximately 50 million people are affected with epilepsy around the world”, and obviously this number will tend to increase with the new definition. Though recent epidemiological studies do not exist for Pakistan it is estimated that the prevalence of epilepsy is 9.99/1000. Highest prevalence is seen in people younger than 30 years of age. That is: about 2 million people and 1/10th of the world burden of epilepsy is in Pakistan. The guidelines available in developed countries are composed for a setting where treatment of Epilepsy is provided by epileptologists/neurologists. In Pakistan, the scenario is such, there is only one neurologist for 1.4 million population contrast to US where one neurologist for 26 thousand people. So there is a desperate need to adapt to alternate guidelines with strategies to provide epilepsy management at a primary care level and to standardize epilepsy care on a National level. The primary care physicians in civil hospitals and dispensaries, and general practitioners (GPs), are the mainstay of health care in Pakistan and therefore see most of the PWE. Unfortunately neurology rotation is not a mandatory in undergraduate training thus most lack the information and skill needed for proper epilepsy diagnosis and management. In 2011, WHO mental health Gap Action Programme (mhGAP) released evidence based epilepsy care guidelines for use in low and middle income countries. These guidelines provide a crude Performa that requires local adaptation for use within individual countries. The guidelines state “For effective implementation and sustainability, the sense of ownership and empowerment must be transferred from the global health authorities to the local people. Socio-cultural and financial barriers that impede the implementation of the guidelines should be identified and ameliorated.”

Table 1: Factors to consider while developing National guidelines (modified from WHO guidelines)

<table>
<thead>
<tr>
<th>Factor</th>
<th>Developed country</th>
<th>Developing country like Pakistan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross National income</td>
<td>> USD 3036</td>
<td>< USD 565</td>
</tr>
<tr>
<td>Access to Health care</td>
<td>Primary care for all with established referral systems</td>
<td>Limited to very basic primary care</td>
</tr>
<tr>
<td>Health care funding</td>
<td>National programs and private insurance systems</td>
<td>Often ill funded rely on donors or volunteers. No set system of insurance</td>
</tr>
<tr>
<td>Cultural perception of seizures</td>
<td>Biomedical model</td>
<td>Traditional medicine, spiritual approach, contagion belief common</td>
</tr>
<tr>
<td>Common Epilepsy etiologies</td>
<td>Ideopathic, neoplastic cerebrovascular</td>
<td>Post infectious, antenatal, post traumatic</td>
</tr>
<tr>
<td>Socio-cultural attitudes towards epilepsy</td>
<td>At lease social presentation of neutrality</td>
<td>Overt negative public perception, stigmatization, and discrimination common</td>
</tr>
<tr>
<td>Treatment gap</td>
<td><20%</td>
<td>70-94%</td>
</tr>
</tbody>
</table>
VARIABLES AFFECTING SELECTION OF AEDS IN PAKISTAN:

The Selection of AEDs depends on the proper diagnosis of the seizure type, etiology and severity of seizures. In Pakistan the cost, availability and socio-cultural issues also need to be considered. These factors affecting AED selection have been poorly studied, and yet are fundamental to effective medical management. Thus the principles and success of treatment in Pakistan may differ considerably from developed countries. The principles of drug therapy may not be understood by patients, and the supply of drugs is often erratic; Therapy needs to be prioritized to cost effectiveness, requiring a cheaper and widely available drug eg,Phenobarbital, carbamazepine or valproate to be tried as first line contrary to international guidelines. Computations of treatment gap figures in three developing countries suggest that “between 80-94% of patients with active epilepsy are not receiving proper anticonvulsant therapy, cost and cultural beliefs are two of the main factors.”

Table 2: Factors affecting AED selection

<table>
<thead>
<tr>
<th>AED-specific variables</th>
<th>Patient-specific variables</th>
<th>Nation-specific variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seizure type or epilepsy syndrome specific</td>
<td>Genetic background</td>
<td>AED availability</td>
</tr>
<tr>
<td>efficacy or effectiveness</td>
<td>Age</td>
<td>AED cost</td>
</tr>
<tr>
<td>Dose-dependent adverse effects</td>
<td>Gender</td>
<td>Insurance coverage</td>
</tr>
<tr>
<td>Idiosyncratic reactions</td>
<td>Comedications</td>
<td>Socio-cultural issues</td>
</tr>
<tr>
<td>Chronic toxicities</td>
<td>Comorbidities</td>
<td></td>
</tr>
<tr>
<td>Teratogenicity</td>
<td>Insurance coverage</td>
<td></td>
</tr>
<tr>
<td>Carcinogenicity</td>
<td>Ability to swallow pills/tablets</td>
<td></td>
</tr>
<tr>
<td>Pharmacokinetics</td>
<td></td>
<td>Compliance</td>
</tr>
<tr>
<td>Interaction potential</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formulations</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

To form these guidelines we reviewed and adopted from many different available guidelines mainly

- Local adaptations of the WHO recommendations (4)
- Modification of the ILAE treatment guidelines: evidence based analysis of AEDs 2006 (11)
- Updated ILAE evidence review of AEDs special report 2013 (12)
- Existing guidelines in other low income countries (13'14'15'16)
- NICE guidelines, (17)
- AAN practice parameters, (18)
- AES recommendations (19)
- A multitude of literature to support our selection and recommendations (20-43)

Definition of Epilepsy:

In 2013 an international taskforce of the ILAE shaped out a communal definition of Epilepsy. This definition is useful for all or most practical purposes, thus more helpful in management. Epilepsy was defined as recurrent unprovoked seizures i.e 2 or more at least 24 hours apart. The revised practical definition implies that Epilepsy can be considered even after a single seizure in individuals who have other factors predictive of a second unprovoked seizure, a risk set at 60%. The factors include the diagnosis of an epilepsy syndrome, structural lesions like stroke, CNS infections, intraparenchymal contusions after trauma, as well as reflex seizures such as photosensitive seizures.

Table 3 (2)

A person is considered to have epilepsy if they meet any of the following conditions:

At least two unprovoked (or reflex) seizures occurring greater than 24 hours apart. One unprovoked (or reflex) seizure and a probability of further seizures similar to the general recurrence risk (at least 60%) after two unprovoked seizures, occurring over the next 10 years.

Diagnosis of an epilepsy syndrome

For Classification and Diagnosis guidelines see Appendix A
MANAGEMENT GUIDELINES:
Questions Addressed

Q1-Q3 AEDs Initiation of therapy; Adjuvant therapy; Cessation of therapy
Q4-Q7 Women (fertility, contraception, conception, pregnancy, lactation, teratogenicity), Children, elderly differences
Q8-Q9 Status Epilepticus in Adults and children (protocols)
Q10-Q13 Access to medications, direct and indirect costs, co-morbid conditions, preventable causes
Q14-Q15 Alternate Therapies, diet
Q16 Epilepsy surgery
Q17-Q19 Lifestyle, career choices, Driving
Q20-Q23 Epilepsy Diaries, lockets, keychain or bracelets, Help line

Qs1-3:
Initiation of Therapy:

To this day, Epilepsy remains a clinical diagnosis and making the correct diagnosis is essential for proper management. The treatment and AED selection depends on the type and frequency of seizures (Annex E for status epilepticus), the seizure and syndrome type, (see Annex A for classification guidelines) the patient's gender,(see Annex C for Women) age group (Annex B for neonates and children and Annex D for elderly) and underlying physical and mental health. But for the purpose of General Management guidelines initiation of therapy will focus on Focal Epilepsies and Generalized Epilepsy

Non-pharmacological Management:

Once diagnosis is made patient and family members need to be counselled empathically. Since the disease still carries a strong stigma, confidentiality needs to be maintained at all steps, and the condition should be discussed with any family member with consent of the PWE.

- Establish the diagnosis
- Education/ counselling
- Address psychosocial issues
- Lifestyle modifications

Patients need counselling regarding the

- Disease,
- Prognosis,

Life style modification includes

- Adequate sleep - early to bed early to rise
- Change in job e.g. professional drivers, swimmers, boxers, airplane pilots etc.
- Avoidance of alcohol, stimulants, energy drinks, gutka, JM, etc.
- Stress reduction — specific techniques, Yoga, meditation, early morning walks
- Adequate diet – high protein, Low carbohydrate, Vit. D, B rich diet, ketogenic diet
- Joining support groups, Avoid social isolation

Pharmacological treatment of epilepsy

The mainstay of pharmacologic treatment is AEDs, their proper selection and counselling of the patient and their care givers on the duration of therapy .It is important that Doctor discusses these clearly with patient but giving them hope of cessation of therapy if compliance is maintained.

When to Start AEDs after first seizures

Whether to treat first seizure is controversial studies show 16-62% recur within 5 years, depending on which review to consider. Relapse rate is reduced by antiepileptic drug treatment, and it is now recommended that since Neurological abnormalities, abnormal imaging, abnormal EEG or family history increase relapse risk these patients should be treated after first seizure.

(Table 4) When to Start AEDs after first seizures

<table>
<thead>
<tr>
<th>Definitely:</th>
<th>Possibly:</th>
</tr>
</thead>
<tbody>
<tr>
<td>With structural lesion like</td>
<td>Unprovoked seizure</td>
</tr>
<tr>
<td>Brain tumor, AVM,</td>
<td></td>
</tr>
<tr>
<td>Infection,encephalitis,</td>
<td></td>
</tr>
<tr>
<td>Without structural lesion:</td>
<td></td>
</tr>
<tr>
<td>h/o Epilepsy in sibling</td>
<td></td>
</tr>
<tr>
<td>EEG with definite pattern.</td>
<td></td>
</tr>
<tr>
<td>Prior but remote sz</td>
<td></td>
</tr>
<tr>
<td>prior neurological history.</td>
<td></td>
</tr>
<tr>
<td>Todds post ictal paresis</td>
<td></td>
</tr>
<tr>
<td>Status epilepticus at onset.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Probably not:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>alcohol withdrawal</td>
<td></td>
</tr>
<tr>
<td>Drug abuse</td>
<td></td>
</tr>
<tr>
<td>Sz with acute systemic illness,</td>
<td></td>
</tr>
<tr>
<td>metabolic derangement</td>
<td></td>
</tr>
<tr>
<td>Immediate post impact seizure</td>
<td></td>
</tr>
<tr>
<td>A benign epilepsy syndrome.</td>
<td></td>
</tr>
<tr>
<td>Excessive sleep deprivation.</td>
<td></td>
</tr>
</tbody>
</table>
It should be kept in mind that there is no ideal AED. An AED is a drug which decreases the frequency and/or severity of seizures in people with epilepsy
AED treats the symptom of seizures, not the underlying epileptic condition
Our goal should be to maximize quality of life by minimizing seizures and adverse drug effects.

Table 5: Shows factors determining AED suitability

<table>
<thead>
<tr>
<th>Factors determining AED suitability include:</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) seizure type and/or epilepsy syndrome;</td>
</tr>
<tr>
<td>b) childbearing potential;</td>
</tr>
<tr>
<td>c) the presence of comorbidity;</td>
</tr>
<tr>
<td>d) individual and/or carer preferences;</td>
</tr>
<tr>
<td>e) the presence of contraindications to the drug;</td>
</tr>
<tr>
<td>f) potential interactions with other drugs;</td>
</tr>
<tr>
<td>g) potential adverse effects</td>
</tr>
<tr>
<td>h) the licensed indication of the drug.</td>
</tr>
<tr>
<td>i) Cost of AED</td>
</tr>
<tr>
<td>j) Patients socio-economic status</td>
</tr>
<tr>
<td>k) Age</td>
</tr>
<tr>
<td>l) Compliance</td>
</tr>
<tr>
<td>m) AED availability</td>
</tr>
<tr>
<td>n) Adult lifestyle</td>
</tr>
</tbody>
</table>

Principals of Management:
Focused Goals:
- Complete control of seizures
- No/minimum adverse events
- No/minimum drug-drug interactions
- Improve quality of life
- Optimize growth and development in pediatric patients

Management Strategy:

It is recommended that PWE should be initiated on Monotherapy (single AED). If the initial treatment is unsuccessful, then monotherapy using another drug can be tried. Never to start on two drugs unless a temporary build-up period is required or the patient has a progressive epilepsy syndrome with very frequent daily seizures.

For example, follow below strategy:
- Monotherapy
- Monotherapy (2nd Agent) (titrate second first then taper first) Caution Pt may have seizure during transition!
- Monotherapy (additional trials) or Combination of 2 AEDs
- Combination of 2 AEDs (additional trials), reconsider diagnosis!
- Evaluation for surgery or three AEDs
- VNS
- Ketogenic diet

Points To Note:

1. The diagnosis of epilepsy needs to be critically evaluated if events continue despite an optimal dose of two first-line AEDs, before combination therapy is considered.
2. PWE should be given a trial of at least 2-3 appropriate monotherapy regimens, with caution during the transition.
3. If an AED has failed because of adverse effects it should be stopped immediately and a second effective first-line drug initiated.
4. If an AED has failed due to continued seizures, a second drug should be started and built to adequate dosetolerated dose and then the first drug should be tapered off slowly.
5. It should be noted that some PWEs like (un-affording families, teenagers, concerned parents, common belief that drugs are harmful) may choose not to take AED therapy. In these cases, reasons should be sought and addressed accordingly. It should be clarified if risk of recurrence is high as described in Table 3.
Table 6: shows different AEDs and their three letter abbreviations, common side-effects

<table>
<thead>
<tr>
<th>Medication</th>
<th>Usual Starting Dose</th>
<th>Titrated Up or Down By</th>
<th>Usual Maximum Daily Dose</th>
<th>Common Side Effects</th>
<th>Summary Of Indications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetazolamide (AZM)</td>
<td>250 mgs bd</td>
<td>250mgs every week</td>
<td>1000mgs daily In divided doses</td>
<td>GIT Dist. U&E Dist ↑ urine output</td>
<td>Adjunctive for all sz types especially drop attacks</td>
</tr>
<tr>
<td>Carbamazepine (CBZ)</td>
<td>100-200 mgs 1-2 times daily 2-3mg/kg/day</td>
<td>100 mgs every week</td>
<td>2000 mgs daily In divided doses 10-20mg/kg/day</td>
<td>GIT Dist. *Rash Hyponatremia agranulocytosis</td>
<td>Mono/adjunctive therapy. Worsens myoclonic and absence seizures</td>
</tr>
<tr>
<td>Clobazam (CBZ)</td>
<td>5-10 mgs daily</td>
<td>5-10 mgs every week</td>
<td>Up to 60 mgs daily</td>
<td>Drowsiness, addictive</td>
<td>Adjunctive for all refractory sz types as rescue use</td>
</tr>
<tr>
<td>Clonazepam (CLB)</td>
<td>0.5 mgs bd</td>
<td>0.5 mgs</td>
<td>8 mgs daily</td>
<td>Drowsiness ↑ Resp. secretions in children Addictive</td>
<td>Adjunctive for all sz type, esp Dravets syndrome</td>
</tr>
<tr>
<td>Diazepam (DZP)</td>
<td>5-10mgs daily</td>
<td>2.5-5mgs</td>
<td>30mgs per day</td>
<td>Drowsiness Addictive</td>
<td>Prolonged/cluster seizures i.v use or rectally for children</td>
</tr>
<tr>
<td>Eslicarbazepine acetate (ESL)</td>
<td>400mg/day</td>
<td>400mg/day</td>
<td></td>
<td>Contraindicated in heart block Encephalopathy, neutropenia, hyponatremia *Rash</td>
<td>Mono/Adjctive for partial sz.</td>
</tr>
<tr>
<td>Ethosuximide* (ESM)</td>
<td>250 mgs bd</td>
<td>250 mgs every week</td>
<td>2000 mgs daily</td>
<td>GIT Dist. Drowsiness</td>
<td>Mono/adjunctive for absence szs</td>
</tr>
<tr>
<td>Ezogabin'' (retigabin)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Blue discolation of skin and retinal changes</td>
<td>(held from market for now)</td>
</tr>
<tr>
<td>**Felbamate</td>
<td>300 mgs tds</td>
<td>300 mgs every week</td>
<td>3600 mgs daily In divided doses</td>
<td>Liver Failure and aplastic anemia rare risk 1:5000</td>
<td>Adjunctive for all Szs which have failed all other AEDs. Used under strict specialist supervision</td>
</tr>
<tr>
<td>Gabapentin (GBT)</td>
<td>200-300 mgs tds</td>
<td>200-300 mgs every 1-2 weeks</td>
<td>3600 mgs daily In divided doses</td>
<td>GIT Dist. Weight Gain Dizziness</td>
<td>Mono/adjunctive for partial onset szs +/- sec gen</td>
</tr>
<tr>
<td>Lacosamide (LCM)</td>
<td>Initially 50mgs bd 1-2mg/kg/day</td>
<td>Increase weekly by 50mg bid</td>
<td>200mgs bd or 6-9mg/kg/day</td>
<td>Nausea, dizziness, somnolence, headache</td>
<td>Adjunctive for partial onset szs +/- sec gen</td>
</tr>
<tr>
<td>Drug</td>
<td>Starting Dose</td>
<td>Dose Range/Guidance</td>
<td>Duration</td>
<td>Common Adverse Effects</td>
<td>Use</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------</td>
<td>---------------------</td>
<td>----------</td>
<td>------------------------</td>
<td>-----</td>
</tr>
<tr>
<td>Lamotrigine (LTG)</td>
<td>25 mgs od 25 mgs alternate days</td>
<td>When on VPA To a target dose of 100 mgs BD Children 0.5 mgs/kg/day</td>
<td>25 mgs every week</td>
<td>In children with VPA 1-5 mg/kg/day Without VPA 2-10 mg/kg/day</td>
<td>500 mgs daily Children 10 mgs/kg/day</td>
</tr>
<tr>
<td>Levetiracetam (LEV)</td>
<td>250 mgs bd 250 mgs od if Adjunctive therapy 10 mgs/kg/day</td>
<td>250-500 mgs every week</td>
<td>3000 mgs daily (1.5 mg bd) 20-60 mgs/kg/day</td>
<td>Psychosis Low Mood GIT Renal</td>
<td>Mono/adjunctive for all sz types</td>
</tr>
<tr>
<td>Lorazepam (LZP)</td>
<td>1-2 mgs daily</td>
<td>1-2 mgs</td>
<td>4 mgs daily</td>
<td>Drowsiness Dependence Respiratory depression</td>
<td>Adjunctive for all sz types Rescue use.</td>
</tr>
<tr>
<td>Midazolam</td>
<td>10 mgs daily</td>
<td>N/A</td>
<td>20 mgs</td>
<td>Drowsiness Respiratory depression</td>
<td>For prolonged or clusters of all szs. Rescue use Status Epilepticus i.v, i.m, intranasal</td>
</tr>
<tr>
<td>Oxcarbazepine (OXC)</td>
<td>Initially 300 mgs twice daily 5-8 mgs/kg/day</td>
<td>Increased according to response in steps of up to 600 mgs daily at weekly intervals</td>
<td>2400 daily In divided doses 5-15 mgs/kg/day</td>
<td>Encephalopathy Neutropenia Hyponatremia *Rash</td>
<td>Mono/adjunctive for partial onset Szs +/- sec gen</td>
</tr>
<tr>
<td>Perampanel</td>
<td>4 mg/day Can titrate to 8-12 mg/day</td>
<td>Increased according to response and SE</td>
<td></td>
<td>Dizziness aggression GIT Boxed warning</td>
<td>Adjunctive partial seizures +/- sec gen.</td>
</tr>
<tr>
<td>Primidone (PMD)</td>
<td>Initially 125 mgs at bedtime</td>
<td>Increased by 125 mgs every 3 days to 500 mgs daily in 2 divided doses (250 mgs bd), then increased according to response by 250 mgs every 3 days</td>
<td>1500 mgs daily In 2 divided doses</td>
<td>Drowsiness</td>
<td>Mono/adjunctive for all sz types</td>
</tr>
<tr>
<td>Rufinamide</td>
<td>200 mgs BD daily</td>
<td>200 mgs every week</td>
<td>1600 mgs BD daily</td>
<td>GIT Dist. Dizziness, fatigue</td>
<td>Adjunctive for Lennox – Gastaut</td>
</tr>
<tr>
<td>Tiagabine (TGB)</td>
<td>5 mgs bd</td>
<td>5-10 mgs every 1 week</td>
<td>30-45 mgs daily (doses above 30 mgs given in 3 divided doses)</td>
<td>Diarrhoea Dizziness Nervousness</td>
<td>Adjunctive for partial onset szs +/- sec gen</td>
</tr>
</tbody>
</table>
Interactions between antiepileptic drugs are complex and may enhance toxicity without a corresponding increase in antiepileptic effect. These interactions are usually caused by hepatic enzyme induction or hepatic enzyme inhibition. These enzyme inducers and inhibitors are listed in the table below.

<table>
<thead>
<tr>
<th>Antiepileptic Drug</th>
<th>Dosage Information</th>
<th>Common Side Effects</th>
<th>Drug Interactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topiramate (TPM)</td>
<td>25 mgs daily 1mg/kg/day</td>
<td>Weight Loss ↑, Renal Calculi, Word Finding Difficulties, Pins and needles</td>
<td>Mono/adjunctive for all sz types</td>
</tr>
<tr>
<td>Valproate (VPA)</td>
<td>300 mgs bd 5mg/kg/day every week</td>
<td>Weight Gain, Tremor, hair loss</td>
<td>Mono/adjunctive for all sz types</td>
</tr>
<tr>
<td>Vigabatrin (VGB)</td>
<td>500 mgs bd 20-50mg/kg/day</td>
<td>Hyperkinesia, insomnia, Visual field constriction in 30% of patients</td>
<td>Adjunctive for partial onset szs +/- sec gen, Wests syndrome</td>
</tr>
<tr>
<td>Zonisamide* (ZNG)</td>
<td>50 mgs daily or 25mg bd. 1-2mg/kg/day</td>
<td>Weight loss ↑, Renal Calculi, Ataxia</td>
<td>Adjunctive for partial onset szs +/- sec gen</td>
</tr>
</tbody>
</table>

*Not available in Pakistan or difficult to get

**Felbamate - Patients are usually electively admitted when initiating this AED due to the incidence of fatal liver failure and aplastic anaemia, for routine lab observation.

***Vigabatrinl - Its use is restricted to whom all other combinations are inadequate or not tolerated. It must only be initiated by a Neurologist. All patients must have visual field testing prior to commencement and every 6/12 thereafter. !! Withdrawn at present

Rash All AEDs carry the risk of rash, however the drugs highlighted as Rash carry a risk of Stevens-Johnsons Syndrome, toxic epidermolysis

enzyme inducers and affect the metabolism of other drugs, for example Oral Contraceptives; women need to be alerted of this interaction.

weak enzyme inducers and may affect the metabolism of other drugs at high doses.

Signs and Symptoms of Toxicity: vary from drug to drug however the following may indicate possible toxicity: Diplopia, blurred vision, unsteady gait, excessive tiredness, new onset of dizziness, sometimes increase in seizures (as with PHT).

- GIT Dist may manifest as anorexia, nausea, vomiting, dyspepsia, constipation, diarrhoea or any s/s of GI disturbance

Interactions between antiepileptic drugs are complex and may enhance toxicity without a corresponding increase in antiepileptic effect. Interactions are usually caused by hepatic enzyme induction or hepatic enzyme inhibition. These interactions are highly variable and unpredictable.
AED Selection some guiding principles:

1. When possible, choose AED on the basis of the presenting epilepsy syndrome. If the epilepsy syndrome is not clear at presentation, base the decision on the presenting seizure type(s), i.e., Focal or Generalized.

2. Selecting commonly available manufacturer’s AED preparation is recommended. Changing preparations of some AEDs may vary in bioavailability or pharmacokinetic profiles therefore disrupting seizure control.

3. Where Focal seizures are suspected, prefer sodium channel blockers as first-line AEDs (see fig 1).

4. Where generalized seizure syndromes are suspected, consider broader spectrum AEDs (see fig 1).

5. Phenobarbitone is a broad-spectrum efficacious AED that is easily available in Pakistan at minimal price, therefore should still be considered as first-line therapy where affordability is an issue as risk of seizures outweigh the long-term side effects. However, sub-optimal preparations need to be avoided.

6. Phenobarbitone (PB) should be offered where compliance due to cost is suspected.

7. Valproate is another broad-spectrum AED, cost-effective and easily available but should be avoided in women of child-bearing age. Lamotrigine is an alternative for women with epilepsy but need to be aware of risk of skin rashes (see 11). Levetiracetam (LEV) should be considered as an emerging first-line AED for generalized Epilepsies.

8. Carbamazepine (CBZ) and Lacosamide are two commonly available sodium channel blockers and

9. If using carbamazepine and valproate, check LFTs, serum amylase.

10. When prescribing sodium valproate (VPA) to women and girls of present and future childbearing potential discuss the possible risk of malformation and neurodevelopmental impairments in the unborn child, particularly with high doses of this AED or when used as part of polytherapy. Vit B, folate, and calcium supplements should be added.

11. Lamotrigine (LTG) should be administered with caution and slow titration when given as monotherapy and with even slower titration when combined with inducers like valproate to avoid the risk of idiosyncratic reactions like Steven Johnson’s syndrome and toxic epidermolysis. All patients should be counseled and warned to stop medication and contact the physician immediately if any rash appears.

12. Levetiracetam should be given with neuropsychiatric issues in mind and a pyridoxine supplement.

13. Renal clearance should be kept in mind when giving LEV, TPM, LCM especially in elderly.

How to continue AEDs and Follow-up visits guideline:

1. It is imperative for the physician to have a treatment plan and schedule follow-up visits. This should include the patient and/or caregiver and they should be mentally prepared for a long-term AED use.

2. Monthly visits till stable, then 3 visits every 3 months and then when completely stable 6-monthly to ensure compliance, review side-effects and treatment plan.

3. PWE should be counselled to follow-up immediately if adverse effects (for example, bone health issues, blood dyscrasias, and neuropsychiatric issues, excessive drowsiness,) or if there is an increase in seizure frequency.

4. If management is complicated, PWE should be referred to a specialist.

5. All PWE should be counselled about action to be taken after a missed dose or after a gastrointestinal upset like diarrhea and vomiting.

6. The risks and benefits of continuing or withdrawing AED therapy should be discussed with PWE who have been seizure-free for at least 2 years and patient lifestyle modifications and risk of recurrence should be understood by PWE.

7. For uncontrolled patients, treatment should be reviewed at regular intervals so PWE are not maintained for long periods on treatment that is ineffective or poorly tolerated, when in doubt early referral to specialist is more cost effective.

Examples of blood tests include:

1. Regular blood test monitoring in PWE is not recommended as routine, and should be done only if clinically indicated or non-compliance is suspected as below

2. Before surgery – clotting studies in those on sodium valproate should be checked.

3. For Patients on enzyme inducing AEDs (CBZ,
4. Serum creatinine levels for those on drugs cleared through the kidney (LCM, LEV, TPM, GBT).
5. Test for serum amino acids, TSH, B12, and urine for organic acids in all children with neonatal non-infectious seizures and refractory seizures and for all those with consanguineous parents.
6. Asymptomatic minor abnormalities in test need not change AED but keep vigilance on.
7. Serum Blood levels of AEDs should be done if non-compliance or toxicity is suspected, or when there is breakthrough seizure after a period of seizure freedom.

Compliance can be optimized with the following:
- Educating the PWE and their caregivers in a positive and hopeful way.
- Reducing the stigma associated with the condition
- Using simple and cost effective medication regimens
- Minimising side effects.
- Being available to counsel the patient as needed.
- SMS bulk reminder module

Discontinuation of AEDs:
1. Ideally A sleep deprived EEG should be done prior to considering medicine taper.
2. Patient should be seizure free for at least 2 years on AEDs.
3. When AED treatment is being discontinued in PWE who has been seizure free, it should be carried out slowly (at least 2-3 months) and one drug should be withdrawn at a time.
4. Particular care should be taken when withdrawing benzodiazepines and barbiturates (may take up to 6 months or longer) because of the possibility of drug-related withdrawal symptoms and/or seizure recurrence.
5. PWE and caregiver should be counseled if seizures recur the last dose reduction is reversed and schedule visit immediately.

AED-AED and AED-Drug Interactions

The list below is to help guide the physician to select the most appropriate AED when the patient is on other classes of drugs and multiple medications. Some common interactions between antiepileptic drugs and non-antiepileptic drugs are listed below in table 7. Table 8 is a list of AEDs and interactions to help guide the physician to select the most appropriate AED when a patient is on other classes of drugs. The tables list only the common drugs used and interactions noted and are in no way exhaustive.
<table>
<thead>
<tr>
<th>Agents</th>
<th>General interactions</th>
<th>Agents that may increase plasma levels</th>
<th>Agents that may decrease plasma levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbamazepine</td>
<td>The simultaneous administration of other liquid medicines with CBZ suspension can cause rubbery precipitate in stool. Co-administration with lithium can ↑ neurotoxic SE. Other AEDs may alter thyroid functions, ↓ efficacy of hormonal contraceptives.</td>
<td>CYP 3A4 inhibitors Propoxiphene, Vigabatrin, VPA, protriptyline, loxapine, sertraline, ritonavir, nafimidone, isoniazid, verapamil, ketoconazole, cimetidine, flunerase, visozone, macrolides, diltiazem</td>
<td>CYP 3A4 inducers, felbamate, PHT, mefloquin</td>
</tr>
<tr>
<td>Clonazepam</td>
<td>CNS depressants, MAOIs, TCAs and some anti convulsants may increase depressant effects of CNC. With VPA in Absence seizures can induce absence status!</td>
<td>CYP 3A inhibitors Azole antifungals, cimitidine</td>
<td>CBZ</td>
</tr>
<tr>
<td>Divalproate Sodium, Valproic acid</td>
<td>Drugs that elevate expression of hepatic enzymes increase the clearance of valproate. It increases free levels of warfarin</td>
<td>Asprin, felbamate, macrolides especially clarithromycin</td>
<td>Cholesteryamine, meropenum, CBZ, PHT, PB, rifampin. Primidone, TPM</td>
</tr>
<tr>
<td>Phenytoin</td>
<td>Needs caution with other albumin binding drugs, PB, VPA, have un-predictable effect on levels. Antacids with calcium inhibit absorption. TCAs ↑ risk for Sz.</td>
<td>CYP inhibitors, Azoles,, trimethoprim, chloramphenicol, isoniazid, disulfiram, phenylbutazone, cimetidine, SSRI, felbamate, TPM, CBZ, ranitidine, ibuprofen, amiodrone, diltiazem.</td>
<td>CYP inducers, Rifampin, doxorubicin, VPA, vigabatrin.</td>
</tr>
</tbody>
</table>

Modified from j. primary psych 2005
Table 5 AED interactions with other drug classes

<table>
<thead>
<tr>
<th>Enzyme inducers</th>
<th>VPA</th>
<th>LTG</th>
<th>ZNG</th>
<th>ETX</th>
<th>CLZ</th>
<th>CLB</th>
<th>OXZ</th>
<th>TPM</th>
<th>FLB</th>
<th>TIG</th>
<th>LEV</th>
<th>LAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHT</td>
<td>CBZ</td>
<td>PHB</td>
<td></td>
</tr>
</tbody>
</table>

Anticoagulants
- Apixaban
- Dabigatran
- Edoxaban
- Rivaroxaban
- Warfarin

Typical antipsychotics
- Droperidol
- Haloperidol
- Trifluoperazine

Atypical antipsychotics
- Aripiprazole
- Asenapine
- Clozapine
- Lurasidone
- Olanzapine
- Paliperidone
- Quetiapine

SSRIs
- Citalopram
- Paroxetine
- Fluoxetine
- Sertraline

SNRIs
- Duloxetine
- Venlafaxine

TCAs
- Amitriptyline
- Nortriptyline

MAOIs
- Phenelzine

Other antidepressants
- Bupropion
- Mirtazapine

Notes: ↓, AED causes decrease in medication level/efficacy; ↑, AED causes increase in medication level/efficacy; *↑*/↓*, medication causes decrease or increase in AED level/efficacy; ☒, combination contraindicated; S, increased CNS depression; ↓↑/↑, OXZ decreases warfarin by CYP2C9 but increases it by CYP2C19.

Abbreviations: AED, antiepileptic drug; PHT, phenytoin; CBZ, carbamazepine; PHB, phenobarbital; VPA, valproic acid; LTG, lamotrigine; ZNG, zonisamide; ETX, ethosuximide; CLZ, clonazepam; CLB, clobazam; OXZ, oxcarbazepine; TPM, topiramate; FLB, felbamat; TIG, tiagabine; LEV, levetiracetam; LAC, lacosamide; SSRIs, selective serotonin-reuptake inhibitors; SNRIs, selective serotonin-norepinephrine reuptake inhibitors; TCAs, tricyclic antidepressants; MAOIs, monoamine oxidase inhibitors; CNS, central nervous system.
Initiation of AEDs Drug choice with seizure type:
Treatment (Monotherapy) of patients with newly diagnosed focal (partial, complex partial and secondarily generalized) seizures:

Table 8. Medication Selection in Patients with Focal onset seizures or symptomatic lesion related Epilepsies.

<table>
<thead>
<tr>
<th>1st line AEDs</th>
<th>2nd Line AEDs</th>
<th>3rd Line AEDs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbamazepine CBZ</td>
<td>Levitiracetam LEV</td>
<td>Clonazepam CNZ</td>
</tr>
<tr>
<td>Lacosamide LCM</td>
<td>Valproate VPA</td>
<td>Tiagabin TGN*</td>
</tr>
<tr>
<td>Oxcarbazepine OXC</td>
<td>Topiramate TPM</td>
<td>EsilCarbazepine Acetate ECA*</td>
</tr>
<tr>
<td>Lamotrigine LTG</td>
<td>Gabapentine GBP</td>
<td>Zonisamide ZNS*</td>
</tr>
<tr>
<td>Phenobarbitone PB</td>
<td>Phenytoin PHT</td>
<td>Perampanel*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Clonazam CLB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rufinamide*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vigabatrin</td>
</tr>
</tbody>
</table>

*Not available in Pakistan

A) Adults with focal(partial) onset seizures (ILAE 2013)

Recommendations:

1. Offer CBZ/ OXC/LTG/LCM or PB (where cost is an issue) as first line treatment to patients with newlydiagnosed focal seizures.
2. Offer LTG, PHT, OXC or VPA if CBZ and PB are unsuitable or not tolerated. If the first AED tried is ineffective, offer an alternative from these 5 AEDs. (Be aware of the teratogenic risks of sodium valproate and idiosyncratic rash of lamotrigine)
3. Consider adjunctive treatment if a second welltolerated AED is ineffective
4. If adjunctive treatment is ineffective or not tolerated, discuss with, or refer to, an epilepsy specialist. Other AEDs that may be considered by the epilepsy specialist are eslicarbazepine acetate (ECA), clobazam, phenytoin, pregabalin, tiagabine, vigabatrin and zonisamide.
Table 9. Focal Seizures AED Selection guide by seizure type

<table>
<thead>
<tr>
<th>Clinical Situation</th>
<th>Simple Partial Sz</th>
<th>Complex Partial Sz</th>
<th>Secondary generalized</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Monotherapy</td>
<td>CBZ</td>
<td>CBZ</td>
<td>CBZ</td>
</tr>
<tr>
<td></td>
<td>OXC</td>
<td>OXC</td>
<td>PHT</td>
</tr>
<tr>
<td></td>
<td>PHT</td>
<td>PHT</td>
<td>OXC</td>
</tr>
<tr>
<td></td>
<td>LTG</td>
<td>LTG</td>
<td>LTG</td>
</tr>
<tr>
<td></td>
<td>LCM</td>
<td>LEV</td>
<td>VPA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZNS</td>
<td>LEV</td>
</tr>
</tbody>
</table>

Pharmacological management (monotherapy) of Adults with newly diagnosed Generalized Epilepsy Syndromes (IGE)

According to the ILAE studies, “the absence of class I and II RCTs (randomized controlled trials) for adults with GTC seizures implies a marked deficiency in published studies. No AED has reached the highest level of evidence (level A and B) for efficacy”. VPA, LTG, TPM, OXC, PB, PHT, TPM, and CBZ are possibly level C, and GBP, LEV, and VGB are potentially level D efficacious/effective as initial monotherapy for adults with newly diagnosed or untreated generalized onset tonic-clonic seizures. Class IV evidence suggests that CBZ and PHT and other sodium channel blockers may precipitate or aggravate generalized onset seizures. (ILAE updates 2013)

AED Selection General Recommendations:

1. VPA as first-line treatment to adults with newly diagnosed GTCs, avoiding women of childbearing age if possible. (teratogenic risks of sodium valproate in women of childbearing age)
2. LTG if VPA is unsuitable. LEV, if the person has myoclonic seizures or is suspected of having juvenile myoclonic epilepsy (JME), (be aware that lamotrigine may exacerbate myoclonic seizures. Be aware of idiosyncratic reaction of lamotrigine by slow escalation)
3. LEV and TPM in patients where VPA and LTG are not suitable.
4. CBZ, OXC, PHT and TPM as adjunctive treatment to adults with GTC seizures if first line treatments as above are ineffective or not tolerated. (Be aware of the risk of exacerbating myoclonic or absence seizures with CBZ and OXC, PHT.) (Be aware of word finding difficulties and renal stones with TPM)
5. If there are absence or myoclonic seizures, or if JME is suspected, do not use CBZ, GBT, OXC, PHT, pregablin, tiagabine or vigabatrin

Table 10. Generalized Tonic Clonic Epilepsy – AEDs of choice

<table>
<thead>
<tr>
<th>1st line</th>
<th>2nd line</th>
<th>3rd line</th>
</tr>
</thead>
<tbody>
<tr>
<td>VPA</td>
<td>TPM</td>
<td>CNZ</td>
</tr>
<tr>
<td>LTG #</td>
<td>ZNS #</td>
<td>CBM</td>
</tr>
<tr>
<td>TPM</td>
<td>LEV</td>
<td>GBP</td>
</tr>
<tr>
<td>LEV</td>
<td>PB</td>
<td>CBZ #</td>
</tr>
<tr>
<td></td>
<td>PHT #</td>
<td>OXC #</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VIGABATRIN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ETHOSUXIMIDE</td>
</tr>
</tbody>
</table>

#Avoid in myoclonus

*not available in Pakistan
Table 11. Idiopathic Generalized Epilepsy: Medication Selection

<table>
<thead>
<tr>
<th>AED selection</th>
<th>Clinical situation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GTC</td>
</tr>
<tr>
<td>Initial mono-therapy</td>
<td>VPA</td>
</tr>
<tr>
<td></td>
<td>LTG</td>
</tr>
<tr>
<td>2nd Mono-therapy if VPA failed</td>
<td>LTG</td>
</tr>
<tr>
<td></td>
<td>LEV</td>
</tr>
<tr>
<td>2nd Mono-therapy if LTG/LEV failed</td>
<td>TPM</td>
</tr>
<tr>
<td></td>
<td>LEV</td>
</tr>
<tr>
<td></td>
<td>LTG</td>
</tr>
<tr>
<td></td>
<td>ZNS</td>
</tr>
</tbody>
</table>

KETOGENIC DIET

INTRODUCTION

The ketogenic diet (KD) is a high-fat, low carbohydrate and protein diet designed to mimic the biochemical response of the body to starvation when ketone bodies become the main fuel for the brain's energy demands (Hartman 2008). It has long been used in the treatment of refractory epilepsy in children, although the exact mechanism of action is unclear. The KD diet was initially reported for use in epilepsy in 1921 (Wilder 1921). The initial diet used was the classical ketogenic diet, based on the ratio of fat to carbohydrate (with protein), of 3 or 4:1. Later an alternative was suggested using triglyceride oil as a supplement, the Medium-Chain Triglyceride (MCT) Diet (Huttenlocher et al 1971). These diets have to be carefully administered with the aid of a dietician.

- There is no evidence of efficacy of ketogenic diet in adults.
- 50% efficacy range is achieved in children
- Very effective in children with gluten related genetic defects
- Recommended in refractory epilepsies in children where multiple regimens of AEDs proven ineffective
- Local ketogenic recipes are available and cost effective.

Epilepsy Surgery

- Upto 85% seizure-free rates if proper selection of patients.

Types of surgical options:

- **Resections:**
 - lesionectomy, lobectomy, hemispherectomy
- **Disconnections:**
 - callosotomy, subpial transection, stereotactic ablations
- **Augmentations:**
 - Vagal, cerebellar, thalamic, deep brain stimulation

All patients with focal onset seizures that are refractory to an adequate trial of two or more AEDs of choice and are refractory to treatment should undergo and MRI seizure protocol (Appendix) and be referred for phase 1 surgical evaluation to an epilepsy specialist. All lesion-related Epilepsy syndromes should be considered for surgical management.

SUMMARY:

These guidelines hope to assist the primary care physician to identify the PWE and select an appropriate AED, and be involved in the care and management in a systemic and organized manner. The guidelines are aimed to minimize inappropriate or inadequate treatment methods, identify preventable etiologies, make individualized selections for women and children with epilepsy, advice about pregnancy and contraception. Guidelines for selecting AEDs in elderly are also provided with common drug interactions. A protocol for Status Epilepticus in adults and children is also included, with the hope of achieving a standardized level of care. These guideline will be revisited and modified on applicability every three years.
References:

13. Malaysian Epilepsy practice consensus 2010
15. Singapore Epilepsy guidelines 2012
16. AAN current guidelines, reaffirmed July 2013
19. NICE guidelines
20. Women with epilepsy, evidence based guidelines for clinicians
21. Dosing and monitoring guidelines for Anticonvulsants emedicine PP Giulio Perugi, MD, and Cristina Toni, MD, PhD
31. Cockerell OC, Johnson AL, Sander JW et al.
Remission of epilepsy: results from the National General Practice Study of Epilepsy. Lancet. 1995; 346(8968):140-144.

38. Engel J. A proposed diagnostic scheme for people with epileptic seizures and with epilepsy: report of the ILAE task force on diagnosis of epilepsy

Conflict of Interest: Author declares no conflict of interest.
Funding Disclosure: Nil

Author’s contribution:

Dr. Fowzia Siddiqi: Study concept and design, protocol writing, data collection, data analysis, manuscript writing, manuscript review
Dr. Shaukat Ali: Data analysis, manuscript review
Dr. Tipu Sultan: Data collection, data analysis, manuscript writing Child Epilepsy.
Dr. Shahid Mustafa: Data analysis, manuscript review.
Dr. Saleem Barech: Data collection, data analysis.
Dr. Sarwar Siddiqi: manuscript writing, manuscript review
Dr. Abdul Malik: Data collection, manuscript writing Dr Zafar Sajjad: Manuscript writing, Seizure protocol neuroimaging, manuscript review
Dr. Rasheed Jooma: Data analysis, manuscript writing Epilepsy Surgery, manuscript review
Valproate (VPA)
- 300 mg/day for infants
- 5 mg/kg/day for children
- 100-250 mg weekly for adults
- 3000 mg daily for adults
- Weight Gain, Tremor, Hair Loss, Liver Toxicity, Teratogenicity

Vigabatrin (VGB)
- 500 mg/day for infants
- 20-50 mg/kg/day for children
- Increased according to response in steps of 500 mg every 2 weeks
- 3000 mg daily for adults
- Hyperkinesia, Insomnia, Visual Field Constriction in 30% of patients

Zonisamide (ZNG)
- 50 mg daily or 25 mg BID
- 1-2 mg/kg/day
- Increased after 7 days to 100 mg daily in 2 divided doses, then increased if necessary by 100 mg every 2 weeks
- 5000 mg daily for adults
- Weight Loss, Ataxia, Renal Calculi

Klevra and **Klevra XR** are effective in partial & total seizures, with excellent outcomes as add-on therapy. They offer promising results in refractory epilepsy and are safe in all common seizures. They are truly unique and valuable antiepileptic formulations, offering convenient once-daily dosing.

NOW FDA APPROVED in 1 month even in an old infant, with POS.

Dosing Guide:
- **Starting Dose**: 2 mg/kg BID
- **Maintenance Dose**: 21 mg/kg BID

Dosage of Klevra XR:
- Initial Dose: 1000 mg orally once daily
- This dose may be increased every 2 weeks by 1000 mg/day to a maximum of 3000 mg once daily.

Klevra, Klevra XR, and PharmEvo are registered trademarks of PharmEvo (Pvt.) Ltd.